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OOvveerrvviieeww
As instruments are pushed to their limits and beyond, there is an increasing demand to extract as much 
information from data as possible. This will almost invariably require the application of advanced data 
reconstruction methods. For these methods to provide the best possible results demands that the model used to 
describe the data is of high quality. In this work we describe an iterative ReSpect-based method for modelling 
severely overlapped peaks. 
 
IInnttrroodduuccttiioonn
Applications of mass spectrometry to environmental and human health problems are facing twin demands: 
 
1. Maximising information yield from analyses of raw mixtures of low-abundance analytes. 
 
2. Simplifying data extraction for non-experts. Together with continuing demands for high throughput, mass 

accuracy and resolution, these specifications are driving innovation in data analysis, where parametric 
optimisation is a crucial part of maximising information but is far from simple to implement. 

 
Almost all advanced data processing methods require a peak model so that some form of fitting procedure may 
be applied. We present a parametrically-self-optimizing deconvolution algorithm that resolves common 
ambiguities associated with complex, overlapping spectra in low S/N situations. We find the smallest number of 
peaks necessary to describe complex spectra, including spectra that include “tough-call” overlapping peaks. 
Results are validated with nearly degenerate peaks for peptides and multiply-charged glycoforms. 
 
MMeetthhooddss
Peak modelling is ideally performed on a section of a scan that is deemed to comprise a single isolated 
shoulder-less peak. Where peaks overlap, conventional methods require the number of peaks to be specified, or 
at least constrained, since goodness-of-fit metrics by themselves do not select an optimal number of peaks. We 
have developed a method that fits the fewest peaks to the data within the noise. The principle involved is 
straightforward. 
 
1. In this work, data peak profiles are defined by four parameters – left and right width at half height and left 

and right shape. Widths are defined in units of sampling intervals. Shape is defined by a number. 
Programmed shapes range from square wave (infinity but limited to 100) to Gaussian (2) to Lorentzian (1) to 
super-Lorentzian (0). 

 
2. For noisy data a wide range of frequency components will be present from very low frequencies to those that 

describe high frequency components of the noise. The frequencies that describe genuine peaks will be of 
some intermediate value. It is clearly possible to model any of the frequencies present and the only feature 
about genuine signals that identifies them from everything else is that they are expected to be rather more 
intense than any of the noise components. Even so, peak widths and shapes can be very distorted at low 
S/N and the methodology can be made very robust by seeding the method with a crude estimate of the peak 
width. Mass spectrometry peak profiles tend to be Gaussian or, at least, have a high Gaussian content. The 
first trial model is therefore a symmetrical Gaussian profile of the seed width at half height. 

 
3. The trial model, whether too wide or too narrow, is used to deconvolve the data as a means of obtaining the 

underlying sharp information. Depending on the extent of any peak overlap this will mean that: 
 

a) If the model is too narrow, genuine peaks may be split into more than one component. 
 



b) If the model is too wide, overlapped peaks may not be resolved. 
 

Either way, the important thing is to retain only those features with intensity significantly greater than the 
noise. 

 
4. The pattern of significant features may now be used as a model in its own right for a second data 

deconvolution. The data are therefore collapsed into a peak profile that may be modelled using conventional 
methods to generate a second trial model. This completes the first iteration cycle. 

 
5. The process is repeated until there is no significant change in any of the four peak profile parameters. The 

final self-optimised model is then used for a definitive data deconvolution to generate the most reliable and 
plausible peak table. The peak table contains peak positions and intensities along with their associated 
errors. The peak table may, of course, be used for other application such as deisotoping or charge 
deconvolutions. 

 
EExxppeerriimmeennttaall
Spectra from LCMS ESI-ToF chromatograms of protein digests acquired on a Waters Q-ToF (Professor Lewis 
Pannell) were used for method development (Case 1). Glycoprotein data used for testing the methodology on 
severely overlapped glycoform peaks (Case 2) was also acquired on a Waters Q-ToF in a production 
environment. The data were extracted from injection electrospray run on intact glycoforms. The heterogeneous 
protein data used to check mass accuracy for severely overlapped peaks (Case 3) was acquired on a Waters Q-
ToF (Kate Zhang). 
 
All test spectra were baseline corrected before modelling with the methodology presented here. 
 
RReessuullttss
Case 1: Poorly resolved isotope clusters at low S/N from protein digest spectra were used as a means of 
developing and testing the method. One such cluster is shown in Figure 1. 
 
A careful assessment of the data shows the peak width to be approximately 13 sampling intervals at half height. 
Trial symmetrical Gaussian models with half height widths of 8, 10, 16 and 20 sampling intervals were used as 
seeds for the method. Figures 2 and 3 illustrate just how inappropriate the models of 8 and 20 are. When the 
model is far too narrow, genuine peaks will be split in the deconvolved result even though the reconstructed data 
will still be a good fit to the data. Figure 2 shows the deconvolved result using the narrow model. When the 
model is far too wide, the deconvolved result may still appear to be acceptable. However, the reconstructed data 
will reflect the inappropriate model width and it will be a poor fit to the data as shown in Figure 3. 
 

Figure 1. Poorly resolved low S/N 
isotope cluster from a protein digest 

 
Figure 2. Deconvolved result (red) 

using a model with a width of 8 

 
Figure 3. Data reconstruction (red) 
using a model with a width of 20 

By using the described methodology, all four profile parameters are optimised together. The following figures 
show how the parameters change from the input values to their optimum values as the iterations progress. 
Figures 4-7 show how the width parameters change and Figures 8-11 show how the shape parameters change. 
All trial seed models had a Gaussian shape, value 2. LW=left width, RW=right width, LS=left shape and RS=right 
shape. 
 



Figure 4. Trial width = 8 

Figure 8. Trial width = 8 

Figure 5. Trial width = 10 

Figure 9. Trial width = 10 

Figure 6. Trial width = 16 

Figure 10. Trial width = 16 

Figure 7. Trial width = 20 

Figure 11. Trial width = 20 

Regardless of the input peak width, 
all four peak shape parameters 
converge to virtually identical 
values, certainly to within 1%, after 
only 10 iterations. The improvement 
in the quality of both the 
deconvolved result and of the 
reconstruction of the data using the 
optimised model is very clear and is 
shown in Figure 12. The 
deconvolution is very clean and the 
reconstructed data are a noise-free 
version of the original data.The ideal 
model and the two extreme trial 
models are shown in Figure 13. 

 
Figure 12. Reconstruction and 

deconvolution using ideal model 
 

Figure 13. Two extreme models 
and the computed model 

Case 2: The next test was to see how the methodology performed on seriously overlapped peaks. For this test 
we studied a ~150 kDa glycoprotein with four glycoforms separated by approx 140 Da, or 0.1%, surpassing the 
ToF resolution. The ToF MCP detector has marginal signal to noise characteristics for masses at this limit. The 
m/z peaks are nearly degenerate and there are no isolated peaks that may be used for model design. All that 
could be determined was that the peak width was somewhere in the order of 90 sampling intervals and that this 
appeared to be reasonably constant with m/z. Therefore, the requirement was to design a model from one of the 
strongest charges, deconvolve the data and then perform a charge deconvolution. Interpretation of the charge-
deconvolved result would allow the quality of the processing to be objectively evaluated from the mass accuracy 
of the species identified. 
 
The whole data and the Z=39 charge state (the most intense) are shown in Figures 14 and 15. In particular, 
Figure 15 shows how severe the peak overlap is and how poor the S/N is even on the most intense charge. 
 
The modelling methodology was applied to the data shown in Figure 15 and all four profile parameters are 
optimised together. Figure 16 and 17 show how the parameters changed from the input values to their optimum 
values as the iterations progressed. Figure 16 shows how the width parameters changed and Figure 17 shows 
how the shape parameters changed. 
 



Figure 14. Glycoprotein data – full spectrum
 

Figure 15. Z=39 for the glycoprotein data 

Figure 16. Trial width = 90 

Figure 18. Deconvolved results for Z=39 

 
Figure 17. Trial width = 90 

Figure 19. Charge-deconvolved result 

Figure 18 shows the deconvolved results: red trace 
using the estimated model (left & right width = 45; left & 
right Gaussian shapes = 2) and the blue trace using the 
optimised model. The peak at m/z 3925 is split into two 
components using the estimated model and the peak at 
3921 is shifted. ReSpect was then used to charge 
deconvolve the peak table. Figure 19 shows a horizontal 
expansion of the result. The peak widths (red trace) 
directly reflect the size of the mass errors. Peak 
intensities (areas) are correctly maintained and Table 1 
shows the quantified results. Mass differences between 
adjacent glycoform masses are shown. Errors are ±1 
standard deviation. 
 



Case 3: In a third trial we examined a heterogeneous protein of 60 kDa. The data and an expansion of the most 
intense charge are shown in Figures 20 & 21 before baseline correction. All peaks have other peaks in their 
wings and so no individual peak is suitable for modelling. In addition there is a small increase in peak width with 
increasing m/z. For this test we therefore decided to model the three most intense charges and then deconvolve 
all the data with the automatically generated model. The peak table could then be charge deconvolved and the 
result compared with the expected heterogeneity. 
 

Figure 20. Heterogeneous protein data 
 

Figure 21. Most intense charge 
Figures 22 & 23 show the way the peak profile parameters change as the iterations progressed. Figure 24 
shows the charge deconvolved result and Table 2a shows the subsequent analysis. 
 
In Table 2a the predicted masses were calculated from the constants in Table 2b below and the calibrated 
masses were adjusted so that their average difference with respect to the prediction was zero. 
 

Figure 22. Trial width = 22.5 

Figure 23. Trial width = 22.5  
Table 2a also shows the mass errors computed by ReSpect and the major repeating mass 
difference as a means of comparing results with those obtained using the estimated model. 
At the bottom of the table, relevant mean and SDs are shown. 
 



The different highlight colours match those in Figure 24 for ease of identifying masses in the charge-
deconvolved result. 

 

Figure 24. Zero-charge result using optimised model 

The zero-charge results for both the optimised and the estimated model are almost identical and it is only the 
quantified results shown in Table 2a that differentiate between them. A lack of space prevents showing both 
zero-charge results. It is worth noting that the total number of peaks reconstructed by the charge deconvolution 
increased from 194 to 207 for the estimated and optimised models respectively due to the optimised model 
being narrower than the estimated model. 
 
DDiissccuussssiioonn
When analysing complex ESI data, whether it be isotopically resolved digests or unresolved high mass intact 
proteins, the best results will only be obtained from data reconstruction methods when the applied model is a 
close fit to the data peak profiles. 
 
It is generally necessary to perform some form of spectrum deconvolution to resolve peaks and to determine 
position and intensity errors. This allows a rigorous assessment of the results. 
 
We have examined a range of examples as a means of assessing the new methodology. 
 
As described earlier, noise contains a wide range of frequencies. However, the common practice of filtering data 
prior to any processing will destroy the original noise characteristics and enhance the lower frequencies, 
reducing the ability of any method to separate genuine signals from noise. For this reason, the method requires 
a seed width that should be as close as the user can estimate to the truth peak width. Even so, given a good S/N 
the method is sufficiently robust that any realistic estimate of the peak width will ensure that the method 
converges to the best possible peak profile parameters within the freedom given by the presence of any noise. 
 
In the work presented here we have shown how the peak parameters change over 10 iterations. However, the 
number required for convergence is dependent on the noise level, the peak width and the severity of any peak 
overlaps. Therefore, in the continuing methodological development we are making the method self-monitoring so 
that convergence is reached when the reconstruction of the data fits the data within the noise. 
 
Case 1: In this example, we have shown that the seed width for the new modelling methodology may be in 
serious error, certainly by >±30% but that the method converges to the correct peak profile parameters 
regardless of the input seed. This example also shows the effect of a narrow model on the deconvolved result 
and a wide model on the data reconstruction, emphasising the need for using a model that is at least close to the 
truth. The new self-optimising method achieves this. 



Case 2: In this test we have taken a particularly poor S/N example where peak overlap is severe. It is clear from 
Figure 15 that it difficult to design a suitable model manually by manipulating a peak profile overlaid with the 
data. Hand developed models result in the detection of approximately four glycoforms. Traditional curve fitting 
routines are also complicated by the fact that the number of peaks and their approximate positions needs to be 
known in advance. In Figure 15 it is also clear that low frequencies are present so that the peaks close to m/z 
3914 and 3921 each appear to be two peaks. Even at this poor S/N the method “homes in” on peak profile 
parameters that fit all the data rather than just two split peaks. 
 
In the zero-charge result the mass errors are high due to the wide peak width and the excessive noise in the 
data. Even so, the model detects 17 glycoforms, a stunning result given the overall quality of the data. Moreover, 
the mass difference between the zero-charge glycoforms was not a constraint in the model. Nevertheless, the 
deviations from 140 Da are relatively small, the mean difference being 149.3±10.6. This finding provides an 
independent confirmation of the robustness and accuracy of the method. It also far outstrips the number of 
glycoforms detected using conventional data analysis.  
 
Case 3: Here, we wanted an example that would demonstrate the improved mass accuracy that is obtained from 
the ReSpect data reconstruction methodology when the “ideal” model is used. For this it was necessary to use 
data of reasonable S/N but where many peaks were severely overlapped. In this case it was possible to estimate 
the peak width to better than 10% and so the estimated model was actually quite close to the self-optimised one. 
Even so, the number of peaks in the spectrum deconvolution peak table was dramatically higher using the 
slightly narrow estimated model. 
 
Because the ReSpect data reconstruction algorithm analyses all peaks and their errors, it is not surprising that 
the charge-deconvolved results for both models were very similar and it is necessary to look at the result 
statistics. In Table 2a the average of the computed mass errors for the optimised model are ±2.2 Da. This is less 
than half the value of ±5.0 Da for the estimated model. However, the most appropriate test is to compare the 
standard deviation for the differences between the known and reconstructed masses. The values for the 
optimised and estimated models are respectively ±1.3 Da and ±2.7 Da. The mass accuracy has therefore 
improved by just over a factor of 2 by using the optimised model. 
 
It should be noted that there are a number of masses on the zero-charge result that are not identified by the 
presented analysis – the white spikes in Figure 24. In fact almost all of these have been identified but there is 
insufficient space to present a detailed analysis. 
 
CCoonncclluussiioonnss
The three tests presented here demonstrate that: 
 
���� Spectrum deconvolutions and reconstructions of the data are greatly improved by using optimised models 

from the new modelling methodology (Case 1). 
 
���� The new modelling methodology is robust even for very low S/N data in which peaks are severely 

overlapped and where low frequency noise is apparent (Case 2). 
 
���� There is a significant improvement in mass accuracy using self-optimised models from the new method even 

when an estimated model has very similar peak profile parameters to the optimised model (Case 3). 
 
���� The self-optimising method successfully optimises all four peak profile parameters, namely the left and right 

widths and their shapes. 
 
Time trials have shown that model optimisation takes typically 2-5 seconds. This is because only small segments 
of the data are required for modelling. 
 


